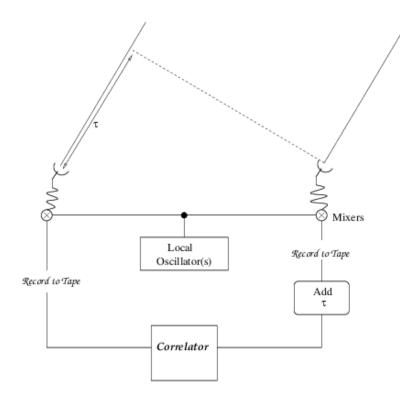

VLBI Correlation 101

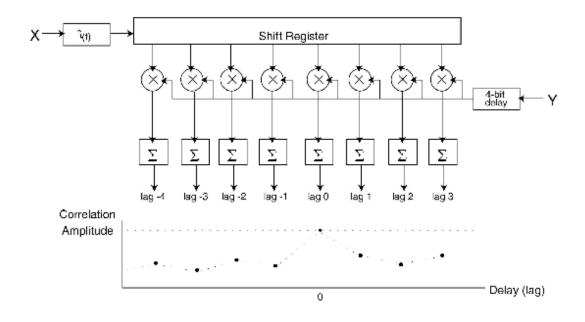

Bob Campbell, JIVE (Joint Institute for VLBI ERIC)

- Concepts via XF
 - Delay tracking
 - Fringe rotation
 - Bsln → Sta Based
- □ The shift to FX
 - SFXC at JIVE

$$au(t) = -rac{1}{c} \, \mathbf{B}(t) \cdot \hat{\mathbf{s}}$$
 $\ arphi(t) =
u au(t)$

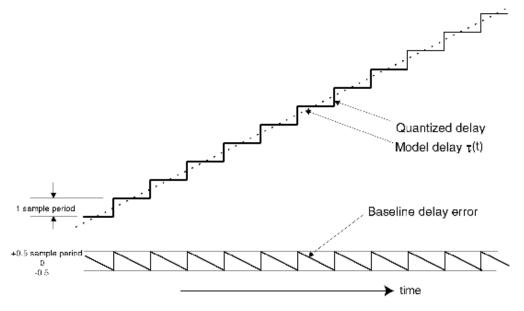
$$\tau_{\rm max} = 21.3\,{\rm ms} \quad (106\,{\rm M}\lambda)_{\rm C.band}$$

$$\tau_{\rm max} = 1.55 \,\mu{\rm s/s} \quad (7700 \,{\rm cyc/s})_{\rm C.band}$$



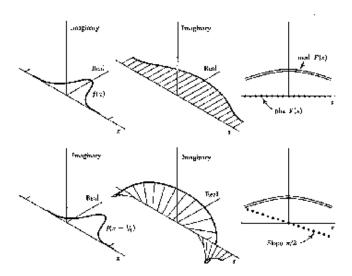
Model Constituents (& approx. scales)

- Station / Source positions: different frames (ITRF, ICRF), motions
- Times: UTC; TAI, TT; UT1; TDB/TCB/TCG
- Orientation: Precession (50"/yr), Nutation (9.6", 18yr), Polar Motion (0.6", 1yr)
- Diurnal Spin: Oceanic friction (2ms/cy), CMB (5ms, dcds), AAM (2ms, yrs)
- Tides: Solid-earth (30cm), Pole (2cm)
- Loading: Ocean (2cm), Hydrologic (8mm), Atmospheric (2cm), PGR (mm's/yr)
- Antennas: Axis offset, Tilt, Thermal expansion
- Propagation: Troposphere (dry [7ns], wet [0.3ns]), lonosphere
- Relativistic $\tau(t)$ calculation: Gravitational delay, Frame choice/consistency



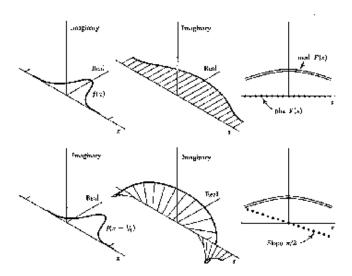
Simplified Real (baseline) Correlator

- Shifting signals from 2 stations by a series of 1-sample steps $(\equiv LAGS)$
 - Each lag = 1 sampling interval = $\frac{1}{2BW}$ (Nyquist)
- One signal has been delayed by au (from $a\ priori$ model)
- This delay is constrained to be integral lags (drop/add a sample)


(baseline) Delay Tracking

- Delay ∼ diurnal sinusoid
 - Amp = B/c; ~ 3.3 ms per 1000km of baseline
 - Delay steps = $\Delta_{ au} = \frac{1}{2BW}$ (1 lag, Nyquist sampled)
- Sawtooth(y) delay error $|\delta_{\tau}| \leq 0.5 \text{ lag} \quad (\leq \frac{1}{4BW})$
- Adding/subtracting delay steps handled in bitstream

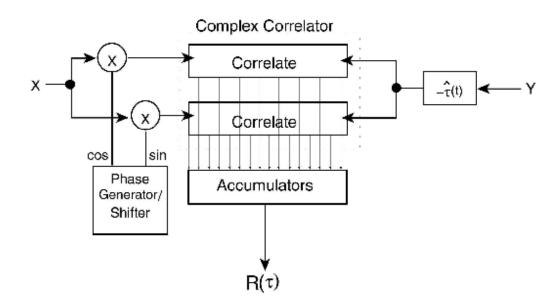
Delay error ↔ φ-slope across band


- \star Error = 1 lag $\longrightarrow 180^{\circ}$ edge-to-edge phase slope across band
- Shift theorm: $f(t-\Delta) \rightleftharpoons e^{-i2\pi(\frac{\nu}{N_{\text{lag}}})\Delta} F(\nu) = e^{-i\pi(\frac{\nu}{N_{\nu}})\Delta} F(\nu)$

- Can also derive via:
 - Tracing expression of fringe phase (TMS §9.3.i)
 - o group-delay $= \frac{1}{c} \int \mu_g \, ds = \frac{1}{c} \int \frac{d}{d\omega} (\omega \mu_p) \, ds$

Delay error ↔ φ-slope across band

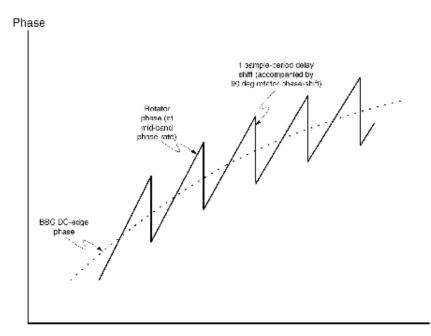
- \star Error = 1 lag $\longrightarrow 180^{\circ}$ edge-to-edge phase slope across band
- Shift theorm: $f(t-\Delta) \rightleftharpoons e^{-i2\pi(\frac{\nu}{N_{\text{lag}}})\Delta} F(\nu) = e^{-i\pi(\frac{\nu}{N_{\nu}})\Delta} F(\nu)$


- Can also derive via:
 - Tracing expression of fringe phase (TMS §9.3.i)
 - o group-delay $= \frac{1}{c} \int \mu_g \, ds = \frac{1}{c} \int \frac{d}{d\omega} (\omega \mu_p) \, ds$

Baseline Complex Correlator

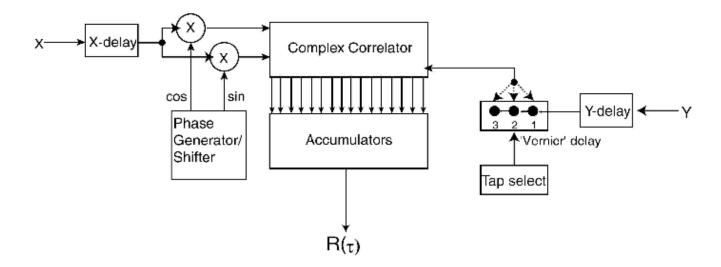
- Delay τ applied to one station
- Fringe rotation (rate †) applied to the other
- cos/sin mixing of fringe rotation (Hilbert transforms: Bracewell Ch.12)
- output = one complex number per lag

XF

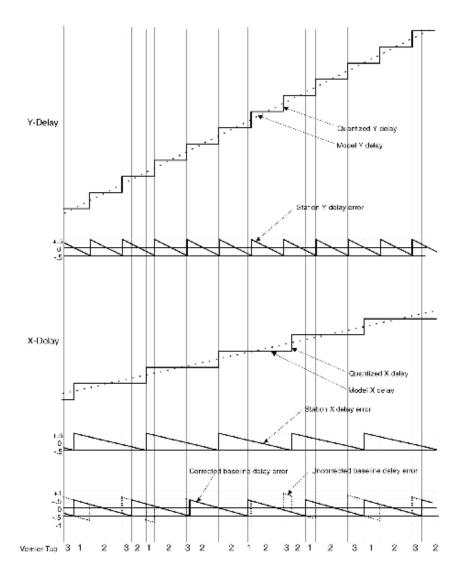


Running the fringe rotator

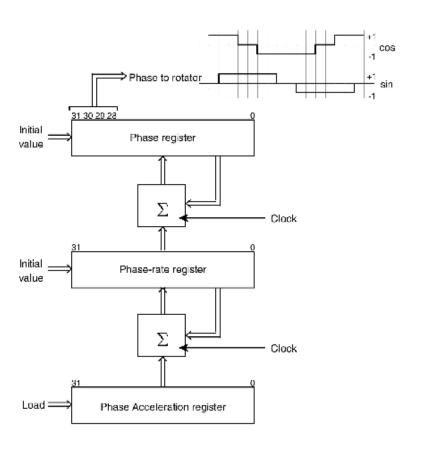
- track φ at band center (minimize phase offsets at edges)
- DC edge o band center: $arphi_{FR}$ increment $=\pm 2\pi (\frac{BW}{2})\delta_{ au} = \pm \pi BW\delta_{ au}$
- ullet Step fringe rotation $\pm 90^\circ$ at each instant delay shifted by $\pm \Delta_ au$


$$\delta_{\tau} \to \delta_{\tau} \pm \Delta_{\tau} = \delta_{\tau} \pm \frac{1}{2BW}, \quad \varphi_{FR} \to \varphi_{FR} \pm \frac{\pi}{2}$$

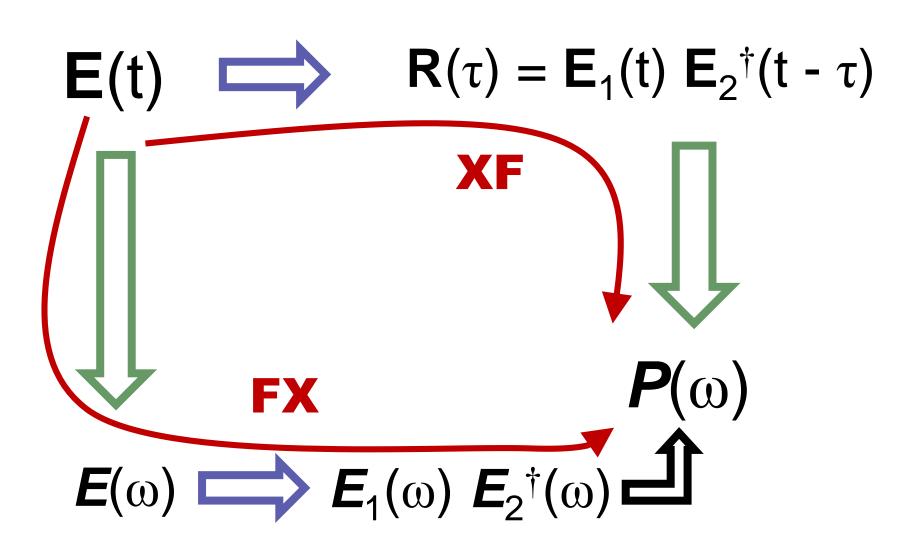
time


Station-based Correlator

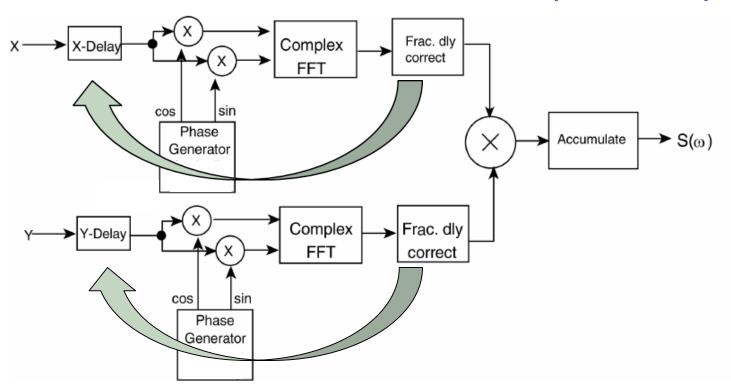
• Same as baseline XF, **PLUS** the "Vernier" delay tap


Station-based Delay Tracking

- ullet \exists periods of $|\delta au|>0.5$ lag
 - Worse phase slopes accross band
- Vernier delay tap (± 1 lag) set to shift $|\delta au| > 0.5$ lag to $|\delta au| \leq 0.5$ lag

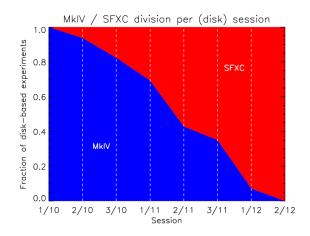

XF fringe-rotate both stations?

- 3-level sinusoids (+1, 0, -1)
 - doubled SNR loss
- Energy scattered into higher harmonics
- Fringe-rotating both stations would create two sets of spurious harmonics that correlate with each other
 - Delay-rate ~ 0 events
- Updating phase "integration"
 - Speed-up
 - Oversampling



Correlations & Fourier Transforms

FX Station-based Correlator (SFXC)



- Fractional bit-shift delay via separate FFT earlier in delay compensation
- Quadrature rotation for removing a priori fringe rate
- A windowing step performed between fringe rate and station-based FFT
- The size of the 2 FFT's independent of each other.

Correlator Evolution at JIVE (I)

- ENV MkIV Data Processor at JIVE
 - 16 stations (via tape, later Mark5 disk-pack playback)
 - Max. 1Gbps (but runs real-time regardless of input rate <1Gbps)
 - Max. 2048 frequency points per subband/pol
 - Byzantine rules for joint max. N{subbands, pols, frequency points}
 - Bespoke (irreplaceable) chips
- EVN Software Correlator at JIVE (SFXC)
 - Much more flexible, but not necessarily real-time
 - 1st user experiment correlated on SFXC from May/Jun 2010

Correlator Evolution at JIVE (II)

- Astronomy Gains enabled by SFXC
 - ~Arbitrary number of stations, total bit-rate, channel BW
 - \square Minimum $t_{int} = 1$ correlation FFT size in lag-space
 - Wide-field mapping (large N_{freq.pt.} per SB/pol, short t_{int})
 - Multiple output phase centers per pointing
 - □ Delay/rate steering to N phase centers from within "internal" wide-field correlation
 - Pulsar gating/binning (1 gate, N equally spaced bins + out-of-gate bin)
 - Incoherent and coherent de-dispersion
 - Spectral zooming
 - Choice of spectral-windowing function (Hann, Hamming, top-hat, cosine)
 - Mixed input channel BWs → handling heterogeneous back-ends
 - External model files (e.g., near-field target or orbiting antenna)
 - Pure station-based fringe rotation to CoE; consistent cross-pols

Useful Links

- Correlators in general (slants towards geodetic perspective)
 - Whitney 2000, IVS General Meeting 2000
- EVN Correlators
 - MarkIV (XF)
 - □ Schilizzi et al. 2001, *Exper. Astron*., <u>12</u>, 49 (EVN MarkIV)
 - Whitney et al. 2004, Rad. Sci., 39, 1007 (Archit. & Algo.'s)
 - SFXC
 - □ Keimpema et al. 2015, Exper. Astron., 39, 259
 - □ Keimpema et al. 2025, *Exper. Astron*., in press